
AI Agents Cheat Sheet
Learn about AI agents online at www.DataCamp.com

0 How to Use This Cheat Sheet
This cheat sheet is a companion to our Introduction to AI Agents course, but it also works on its own. It’s organized
into numbered sections, so you can go through them in order or jump straight to the part you’re most interested in.
While the concept of AI agents is broad, this cheat sheet focuses on systems built around language models.

1 What Is an AI Agent?
An AI Agent is a system that uses a language model to achieve a user-defined goal. It interacts
with its environment by reasoning, planning, and executing actions, often with the help of external
tools.

For example, an AI agent could help you book a flight by searching for options and completing the
reservation for you.

At its core, an AI agent consists of three main components

 The language model powering its reasoning and decision-making
 The tools it uses to interact with the external world and gather information
 The orchestration layer that governs how the agent processes information, plans, and executes

actions to achieve its goals.

2 Language Model
A language model (LM) is a type of artificial intelligence
program designed to understand, generate, and process human
language. The LM is the central decision-maker and reasoning
engine in an AI agent.

A common misconception is that the underlying LM is the agent.
LMs, such as GPT-4o, lack real-world access and can't "think"
beyond their training data. They need to be connected to tools
(e.g., a weather API) to act as AI agents.

Different types of language models can be used in AI agents—
see the table on the right.

Type

Large Language
Models (LLMs)

General-purpose
models

GPT-4o, Gemini 2.5
Flash, DeepSeek-V3

Tasks of medium
complexity

Efficient and cost-
effective models

Gemma 3n, DeepSeek-
R1-Distill-Qwen-1.5B

Simpler tasks

Powerful models that
generate long chains
of thought before
generating an answer

OpenAI O3, DeepSeek-
R1, Claude Opus 4

Complex problems in
coding, math and
science

Small Language
Models (SLMs)

Reasoning
Models

Description Examples Suitable for

3 Tools
Tools extend an AI agent's capabilities by allowing it to interact with external systems and data. They bridge the gap between a language model's internal capabilities and the outside world.

Tools can take various forms, often aligning with common web API methods like GET, POST, PATCH, and DELETE. Broadly, agents need three types of tools:

Extensions bridge an agent and an external API
(weather API, flights API, maps API, etc.). Each extension
comes with example calls that teach the model which
endpoint to invoke and which parameters are required,
letting the agent decide at run time when (and how) to
execute the API call.

Extensions
Functions are custom chunks of code that live outside the
model but can be called by it. The model decides which
function to invoke and fills in the arguments, yet the code
actually runs in your own app (client-side), not inside the
agent. This lets developers keep tight control over execution,
security, and post-processing.

Functions
Data stores function as a “knowledge vault” from
which agents can retrieve information embedded in
existing files and databases. At runtime, the agent taps
into these sources (spreadsheets, PDFs, databases,
websites, etc.) pulling back just the passages it needs
to stay accurate and current.

Data stores

4 Orchestration Layer
The orchestration layer is the cyclical process governing how an AI agent processes information, reasons, plans, and executes actions to achieve
its goals. It maintains the agent's memory, state, reasoning, and planning. This layer uses various cognitive architectures and prompt engineering
frameworks to guide reasoning and planning

 Chain-of-Thought (CoT): Enables reasoning through intermediate steps, breaking down complex problems into a series of simpler, sequential
thoughts

 Tree-of-Thoughts (ToT): Generalizes over CoT prompting by allowing the model to explore various "thought chains.
 ReAct: A framework that allows language models to Reason and take Action.

Orchestration patterns generally fall into two categories

 Single-agent systems: A single LM, equipped with tools and instructions, executes workflows in a loop
 Multi-agent systems: Workflow execution is distributed across multiple coordinated agents, often used when complex instructions or tool

overload become an issue for a single agent. These can follow
 A Manager pattern (a central agent delegates tasks via tool calls); or
 A Decentralized pattern (agents hand off tasks to one another as peers).

5 Agentic Protocols
Agentic protocols are standardized frameworks that facilitate communication and interaction within and between AI agents.

Model Context Protocol (MCP)

Anthropic’s model context protocol (MCP) is an open standard designed to standardize how applications provide context to LLMs and connect
them to external tools and services.

Example: An AI assistant in Slack could use MCP to pull the latest project updates directly from a project management tool like Asana and display
them in your channel.

Agent2Agent (A2A) Protocol

Google’s Agent2Agent (A2A) protocol enables communication and collaboration between AI agents.

Example: The same AI assistant in Slack, after fetching Asana updates, identifies a critical task that needs a specific report generated. Instead of
doing it itself, it uses A2A to securely "talk" to a specialized "Reporting Agent" (which might live on a separate server).

Complementary Protocols

Our example shows that MCP and A2A are complementary protocols that aim to create a more interconnected and powerful AI agent ecosystem.

AI Agent

MCP A2A

Language

Model

Slack

AI Agent

Language

Model

GitHub

MCP

6 Building AI Agents (What to Choose Depending on Your Goals and Skills)

Coding Agents

Coding agents are AI agents specifically designed to assist with or perform coding
tasks, such as generating code snippets, debugging, or refactoring.

Use cases: Automating development tasks, assisting software engineers with code
generation or analysis, or enabling natural language programming. 

Ease of use: Easy to hard, depending on the required programming knowledge and
complexity of the task.

Codex Google
Jules

Devin LovableReplit Firebase
Studio

Workflow-Based Agents

Workflow-based agents offer pre-built functionalities or visual interfaces for
constructing agent workflows, requiring little or no coding. These are often geared
towards automating specific business processes.

Use cases: Automating repetitive business processes, customer service triage, data
entry, or other operational tasks that can be defined through a structured workflow. 

Ease of use: Medium, as it requires understanding the workflow logic and
configuration.

One-Prompt Agents

One-prompt agents primarily rely on a single, well-crafted prompt to guide the
language model's behavior and output for straightforward tasks, minimizing complex
multi-step reasoning or tool use.

Use cases: Generating reports, answering complex questions, or performing actions
like booking tickets or buying groceries from an online store. 

Ease of use: Easy, primarily requiring basic prompt engineering skills.

Agentic Frameworks

Agentic frameworks are software libraries and platforms that provide structures,
tools, and best practices to help developers build, deploy, and manage AI agents,
abstracting away some complexities.

Use cases: Developing custom, complex AI agent applications that require
significant integration, specialized logic, or novel architectures.

Ease of use: Generally medium to hard, depending on framework complexity and
desired customization.

Manus Project

 Mariner

Operator Perplexity
Labs

AI Agent

User Language

Model Tools

External

World

Orchestration Layer

Response

Task

n8n OpenAI
Agents SDK

Make Google’s ADKDify LangGraphLangflow SmolagentsFloWise CrewAIAirOps LlamaIndex

https://www.datacamp.com/courses/introduction-to-ai-agents

